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The time-dependent numerical boundary conditions for time-de-
pendent magnetodydrodynamic fivid flow simulations have been
studied. In this paper, the formulation of the time-dependent numer-
ical boundary conditions are described in a systematic way such
that they can be adapted to different applications. In particular, the
atgorithm, which uses the boundary conditions for the solutions
inside the computational domain of the test cases, is available for
solving both parabolic and hyperbolic systems of partial differential
eguations. A numerical example for an astrophysical application in
the context of photospheric shear induced dynamics is chosen to
validate this new formulation. © 1995 Academic Press, Inc.

1. INTRODUCTION

Applications of numerical models in the field of astrophysics
seek solutions ol hyperbolic equations inside a finite domain
with boundaries on which no physical boundary conditions can
be specified. This approach is called the free boundary value
problem. The method of characteristics is often used to specify
numerically such boundary conditions in order to keep false
physical properties from propagating into the domain as investi-
gated by Wu and Wang [1].

Nakagawa ef al. [2] developed the method of projected
characteristics both to specify the numerical boundary condi-
tions and to solve for the solutions in the computational domain,
Hu and Wu [3] used the method for the numerical boundary
conditions and deveioped the FICE (full-implicit-continuous-
BEulerian) algorithm for the solutions inside the domain, The

purpose of the present algorithm is to soive both parabolic and
hyperbolic systems of equations. The algorithm used in the test
run of this paper is a refined version of the FICE algorithm
which has been renamed as the NICE (nimble implicit continu-
ous-Eulertan) atgorithm [4]. However, the method of projected
characteristics requires complex formulation which may not be
easily modified to suit different applications.

Thompson [5] extended the concept of non-reflecting bound-
ary condtions to the multi-dimenstonal case in non-rectangular
coordinate systems. He later developed a general boundary
condition formalism [6] for all types of boundary conditions
for first-order hyperbolic systems. However, these boundary
conditions are limited to fluid dynamics. Vanajakshi er al. [7]
then applied Thompson’s method to solve boundary value prob-
lem in magnetohydrodynamics (MHD) particularly for isothes-
mal plasma. Consequently, for non-isothermal plasma, the
semi-analytic approach in solving numerically the cigenvectors
of a modified version of the coefficient matrices is no longer
valid,

In this paper, a new analytic approach is presented for
non-isothermal plasma. In addition, when there are two
eigenvectors that are parallel at a boundary, a special treatment
is devised. The theoretical approach for this study is the
same as that of Thompson’s {6], namely, to systematize the
formalism. Therefore, the readers are advised to consult
Thompson's paper [6] for detailed characteristic analysis,
nomenclature, and terminologies. In order to demonstrate the
utility and accuracy of the present algorithm, numerical
simulation for the dynamical evolution of a force-free mag-
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TIME-DEPENDENT NUMERICAL BOUNDARY CONDITIONS

netic field is presented. These sirnulation results are corpared

with a set of gquasi-static analytical selutions given by Martens
et al. {8] for the accuracy test.

2. GOVERNING EQUATIONS

The normalized MHD equations for a perfectly conducting
compressible fluid can be expressed in the vector form

G vy =
L9 (pm=0, (1)
av _ 1 2 —
(2)
%i:+ (VV)P = -asz'V‘f‘ (’y* I)AQ! (3)
iB
—67_V><(v><3), “4)

where the equation of state p = pT is used in the energy
equation to replace pT with pressure p. ® is the stress tensor
or the gravitational potential or both. A is the net rate of
irreversible energy (heat) gain or loss per unit volume and a
is the speed of sound. The (wo non-dimensional parameters,
Mach number M, and plasma beta B, are expressed, respec-
tively, as

where the constants subscripted with (), are scaling factors for
normalization purposes. Other scaling factors are py = po/RT,,
X, Vg, and £) = x,/v,.

3. METHOD OF CHARACTERISTICS

For the convenience of using the method of characteristics
on the boundary, the MHD equations need to be expressed as

oW oW IW oW
— AW A~ L AR — R
at A ox; A ax, A dx; E )

The vector of primitive solution variables is
T=(P,u1,uz,Ha,P,Bl,Bz,BJ)- )]

The 8 X 8 matrices are
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0 0 &p 0 9w 0 0 0
a _Bg B] 0 0 Ity 0 0
0 0 0 0 0 N 0
O 0 B3 “Bz 0 0 0 27}
1
8 = —
A h;
Fy
0 m 0 0 0 —7)-33 0 0
F
0 0 wm 0 0 0 _7,533 0
F, F F
0 0 0 F*’ —pfs, —5”32 ol 9
o 0 0 dp wm 0 0 0
0 “Bg 0 B‘ 0 Uy 0 #]
0 0 ‘_B3 Bg 0 0 s 0
0O 0 0 0 0 o 0

where &> = y7, F» = 1/(yM3), and F; = 2F;/f3,. The factor
h; is the scale length of the coordinate in the ith direction for
the orthogonally curvilinear coordinate system. The vector of
inhomogeneous terms is
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(2, > whi =

=13 =13 =13

uf)

2,0 = B = 3 (g ~ BB ~ (V)
EU 2 — coBDfir — }2” (o, ~ BB — (YD),
2, = B = 23 (ut; = coBaB)fs; — (V@) | (10)
{y~ DAQ - “29(;;312;3 Wi — i_; uifi)
wl(Bifyy + Bafsy + Bifs) + Bilwfyy + wofi; + wafis)
B fy + Bofiz + Bifis) & B o) + wafi + 3 fn)
(B f + Bofi; + Bifn) + Bi(ufy + wofin +owsfin)
where ¢, = 2/(ypM;B,) and
f= 1 ah
P op Y ax;
Equation (5) can also be rewritten as
o +'A”’ o Wic=0 c-ant¥ a:j + A”)%w—s— -E an
The eight left eigenvectors 1, of A® satisfy
FAO =M, i=1,..,8, (12)
where the eigenvalues A} are given by
det(AD ~ AT = 0. (13)

A diagonalizing similanty transformation is generated for
A" by forming the mairix 8, such that its inverse S;* has rows
being the left eigenvectors I}, The similarity transformation is

STIAYS, = Al (14)

where A' is the diagonal matrix of the eigenvalues, Trans-
forming BEq. (11) accordingly gives

s ﬂV_ + A'§TT %—‘X +87'C =0, (15)
ES!
whose components are
e W iwe—o, i=1..8 (6
Jr ax,
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For the reason of convenience, a vector ¥’ of components
%! is defined as

@l =am W, am

a.x]

Equation {15) may now be written as
S %‘1+§E‘+S,‘C 0. (18)

Then, appropriate boundary conditions, which are described in
the next section in detail, are applied to specify the value of
¥} for the inwardly pointing characteristic velocity Al with
respect to the solution volume; the rest of &£} are determined
according to the definition in Eq. (17).

Now, multiply Eg. (18) by 8, giving

Wige+c-o.

a1 (19)

With the simple procedure of putting Eq. (19), for the definition
of C back into Eq. (19), 6 W/9¢ is now completely defined.
However, in order to solve for o W/3¢ in Eq. {19}, the product
d' = 8. %" is required with given 87" and £'. Thus the system
of equations

Srid' = £ (20)

have to be solved for d'.
At the position where three boundaries intersect, Eq. (10} be-
comes

W S 8,8+ 8.8

Y E=0.

(21

Other than £7, #? and £’ now also need to be taken care of
by the boundary conditions. All of the following three sets of
linear systems now need to be solved to obtain d*;

S7'd; = %,

i=12,3. 22)

Back to Eq. {5), in the j direction, where j = 1, 2, 3, the
eigenvalues of AV are

M=w, M=u, M=u+U,
M=u— UL M=u+ U} M=u—-U, 23
/\f]:u}+U{, l\.‘é—uj Uj’
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where
U4 = b
(U =3@+ P+ Via + b - 4ai}), (24)
(UIP =@ + b~ V(@ + b — 4a’h}).
The definition of b is
by=VFylpB;, j=123, (25)

and

b2 = 2‘ bjbj.
=1

For simplicity, the following analysis is only in the x, direc-
tion. Details of the formulations in the other two directions are
shown in the Appendix.

The inverse matrix 87!, whose rows are the left eigenvectors
If of A, which gives

§'=
Fpa? 0 0 0 —F 0 0 0
0 0 0 0 0 ¢ 0 0
0 0 —by by, 0 0 ali -l
0 0 b]_; ’b[z 0 0 C_aU,]u, "CZU,!q
) s
0 Uy U} -boU] Frh 0 cub  cw
u]
0 —Uhj bgl} butl) Frf O caf cw)
ul,
0 Uil bol} bpl) FP? 0 —cuy el
i
0 ~Ulu), ﬁb]ZU‘ll‘ —bjU] FP“p_ 0 —em]  —cag
(26)

where i} = (U, ul = (U uf=u} - bl ul =0 —ul,c, =
Fylp, ¢; = cuby;, and by = b:p;. &' can be calculated according

to Eq. (17) and results in

JW

g —1 >
L= AS T (27)
or
IW,
£l =al = 28
Fszk P (28)

where £k is the element of 8, at row { and column &, and W,
is the kth element of W. But the values of £! for the inwardly
pointing characteristic velogity A} with respect to the solution
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volume are given according to appropriate boundary conditions
which will be discussed in the next section.
Now d! = 8§,%' can be solved with known 87" and &' through
the set of equations
Srdl= %l (29)
Note that eigenvectors (left or right) of A/ will always be linearly
independent, but they are not orthogonal, and it is possible that
any two of them may be nearly parallel. Consequently the
matrix ' may be ill-defined, because it is close to the vicinity
of the singularity for which the numerical solution of Eq. (29)
is poorly determined. In our case, this means b; — 0. Therefore,
Eq. (29) has to be solved analytically and the elements of the
solution vector d' in analytic form are

MU+ MU

L= 0
A T (3%
— UMy — by( My — 2ELd)
dl= by M, 25 2 £5d) 31
2Uby(b} + bY)
U}szl - ba(Mz - 2&;&!},)

1= 3

a4 2Uby (B3 + B3 ’ (32)
Nafu} + Nyfu!

1 — 3
B e T el @)
di = FUEk, (34)

Nibau) + BUNN, — 2€4d1)

1=Vp 3

4 2U k(B3 + bY) ’ (33)
"Nabzﬂl + bsU}a(tN\z - 2§§5d§)
L=Vp L : 36
ot 2U5ul(BE + BY) : (36)
Li— Lidi
di === 37
o o7
where
M=V FB(&%H-[ - 555“2), (38)
-Ni = $%i+l + $%i+2- (39)

Note that d] are displayed in the solving order in which some
of the solved elements may be used for solving the remaining
unsolved elements.

In the case of b, = (;, then, this leads to any two eigenvectors
being parallel and the analytical solution is not defined. Sub-
consequently 7} = 0 and U/} = 0. Physically, this means that
the component of the magnetic induction normal to the bound-
ary vanishes or the magnetic lines-of-force are parallel to the
boundary. In this situation, a set of new eigenvectors needs to
be sought. The determination of these new eigenvectors is
described as follows:
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Observing closely the original eigenvectors in the rows of
S7'in Eq. (26), one can see that [T, 11,17, and {7 still remain
linearly independent to each other; i.e., they are still valid
eigenvectors, while /1, {1, [, and {{ vanish. To find other vaiid
eigenvectors, the original forms of the vanished eigenvectors
are used in cooperation with the linearly combined eigenvec-
tors, and then the limit b, — 0 is taken. If I and /] are summed
and the resulting vector is scaled by 2U), from which a
valid eigenvector

[‘31'- = (01 Oa Ov 01 07 0; cbb31 - Cbbl‘) (40)

can be derived. Scaling the summation of /7 and [T with 2u! and
taking the limit b, — 0, one gets another eigenvector,

11=100,0,0,0, F:b’1a’p, 0, — cbs, — ciby). 41)

Since the third and fourth components of all the eigenvectors
available so far as zero, the most natural selections of the
remaining two eigenvectors linearly independent to the other
eigenvectors are
{1=1(0,0,1,0,0,0,0,0),

§=1.0,0,0,1,0,0,0,0). 42)

The new S7! is now

St =

Fod 0 00 —~Fp 0 0 0
0 0 0 0 0 &y 0 0
0 0 00 0 0 ol ob
g a 1 6 0 ] ] 0
] ur o0 o0 Felp - &b ¢y 0
0 -Ul 00 Fyulp Ciba Cpbs 0
0 0 0 0 Fba’p —cby —ciby O
0 0 1 0 0 0 0

(43)

The solution of Eq. (29) becomes

Di— @)
) I ———
SRS @
di =2, (45}
dl= Li/EL, (46)
Fl+2L+281
l= g~
G P Y D “n
d} = LYEL, (48)
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gt =/ L L+ 2L - 28k

b= Y (49)
—b, 4+ by( RS + L — 284!
dé‘:\/,:) 2=l 3 53(5825b2 6 £l 5), (50)
@l — gl gl
d§=——1—gé5—r—5. 50
1

After the above procedures are carried out in all three direc-
tions, the solutions d', 42, and d* are known. The time derivative
of the primitive solution variables d W/t can be calculated as

m=—d‘—d2—d3+E. {52)
at
The time derivative is integrated through time with
W(I+At)=W(t)+At% {53)

o give the boundary values for a new time step. The NICE
algorithm, then, utilizes the boundary values determined by the
boundary condition to implicitly solve the variables inside the
solution volume for the new time step.

4. BOUNDARY CONDITIONS OF MHD EQUATIONS

There are basically two different types of time-dependent
boundary conditions that generally need to be treated with the
characteristics method in the simulation of plasma phenomena.

The first type of boundary condition is the non-reflecting
boundary condition which is commonly used when there is no
physicai boundary involved. Encountering this type of bound-
ary in the problems of astrophysics is inevitable if the simulation
domain is in a finite volume.

The second type of boundary condition is the coupled bound-
ary condition which deals with boundaries at which only a
portion of the physical properties is known. It is worth noting
that, at any time ¢, the boundary conditions contribute only to
the determination of 3W/dr at the boundary, and never define
W itself[6].

4.1. Non-reflecting Boundary Conditions

At the boundary x; = X}, wave modes for which A/ > 0
are propagating out of the computation and physical domain,
and ¥4 may be computed from its definition in Eq. (17) using
one-sided finite difference approximation to aW/dx;, using
only interior data. (Similarly, at x; = x;.;, we may compute
&4 from its definition in Eq. (17) when Af < 0, using one-sided
differences, as this case also corresponds to an outgoing wave.)

However, if A = 0, then those waves are propagating into
the computational and physical domain and generally may not
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TABLE I
The Differencing Scheme for W/ and W}

Position Vaiue or differencing scheme
x; W/ (backward) W} (forward)
X = Xjpin 0 three point
X = Ko + Ax two point three point
(Xpmn + Ax) < x; < (Hymyy — Axy) three point three point
X = Xjymy — Ay three point two point
X = X three point 0

be computed from interior data. In this case we make use of
the non-reflecting boundary condition of Ref. (4] and set £!
= ( (and set £ = 0 at the inner boundary if A{ = (), which
may be done conveniently by replacing Af by 0 or letting 9 W/
dx; be 0 in the definition of £i,

In the practical applications, two spatial derivatives denoted
by W/ and W? in each of the three directions (j = 1, 2, 3) are
calculated at each boundary point. Both spatial derivatives are
calculated using one-sided differencing: W/, backward differ-
encing; W?, forward differencing. W) is set equal to zero at
the boundary points x; = x;, m, , evaluated with two-point differ-
encing at the points x; = x,, + Ax; and evaluated with three-
point differencing elsewhere. Likewise, W7 is set to zero at the
boundary points x; = x; s, evaluated with two-point differenc-
ing at the points x; = x;,, — Ax; and evaluated with three-
point differencing elsewhere. The differencing scheme for these
two spatial derivatives at different positions is summarized in
Table 1.

Then in Eq. (17), W} is used in place of d W/dx; when Aj
= 0 and W} is used when A} < 0. This approach has one
advantage over replacing A{ with 0: because the stability and
accuracy of the upwind scherne [9] in hyperbolic systems can
be obtained.

4.2. Coupled Boundary Conditions

It is very difficult to give a general description of the bound-
ary treatment for the coupled boundary conditions. Therefore,
we have selected an example to illustrate the procedures of the
treatment of the coupling boundary condition. In this numerical
experiment, the normal direction of the boundary is in the x;
direction which is z in the Cartesian coordinates. The experi-
ment is done with symmetric conditions in the x; direction such
that 3/9x, = 0. The boundary conditions at z = 0 are u; = u;
=0, uy = uylx, 1), p = py, and By = By{x;). Since the normal
velocity u; = 0, the number of outgoing wave modes is three,
which is the number of variables on the boundary needed to
be determined. These variables are p, B,, and B, for this particu-
lar example.

Equation (52), with d* = 0, becomes

W _

—a'— 3+.
o d'—-d°+E

(54)

335

The known dW;/d:, denoted by (W), = 0, are (p), = 0,
(), = 0O, (i), {13), = 0, and (B3), = 0, whose indices are { =
1, 2, 3, 4, and 8, respectively. In the equation, d' can be
evaluated using Eq. (17) and the vector of inhomogeneous
terms E can also be evaluated, assuming that the dissipation
terms are either known or equal to zero at the boundary. Now
&}, corresponding to the in-coming wave mode for which
A = 0, must be evaluated such that the time derivatives can
be treated as the known values.

We began with the solutions d* of Eq. (54), such as

MU + M/ U

3 5
d4 2(”} _ ug) 3 ( 5)
d% — _U}szz - b](zM-z - 2§g4d3)’ (56)
g3 = Uil = bl 2838 7
2Uby(b} + BY)
Nofui + Nyfu?
AL AL (58)
2{Eshuf + E3sh)
di = £3/ &% (59
N:bzu} + bUN, — 2§§5d§)
d= 60
d3=Vp 2U%(bE + b)) ' (60)
-~ Nbui+ b UNN, — 2&5d4Y)
3 _ \/_ Wiy 2 Al Ny 5543 61
d 203D} + bY) ’ e
583 — £3 dS
d3| — 1 3‘515 5. (62)
11
and the eigenvalues are
Al=0, Al=0, Al=U], Ai=-U}l Ai=U},
1 2 3 A 1 As A5 7 (63)
AM=-Ui, M=U IM=-Ul

The components of £} that need to be specified are £3, £3,
3, %3, and £7. From observation, one immediately noted that,
by setting (p), and (B;), = 0, this procedure automatically
determined £7 and #3, respectively. To determine the other
three £i's M, M, and M; have to be solved from the simulta-
neous Eqs. (55), (56}, and (57). The resuits are

My = 2b3(b]d§ — badd), (64)

M = —2Uby(byd} + bud?) + 203NV — B,  (65)
3= U 2d3(? - ud) - .MQIU}]. (66}

where d3, d3, and 42 can be obtained from

di= e, —di— (up, (67)
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(68)
(69)

where ¢; is the ith component of the vector of source terms E.
Finally, we have

i
££§=333{+\/FBM1, (70)
1
$3= L3+ =, 71
3 [} '\/’F‘B 2 ( )
1
i=Li+ M. 72;
7 8 '\/F‘E 3 ( )

Now d3, d}, and 43 can be determined from Eqgs. (58), (60), and
{61}, respectively. Consequently, (p),, (B),, and (B;), are ob-
tained from Eg. (54).

5. NUMERICAL EXPERIMENTS

The experiments are performed to verify the validity of the
coupled and non-reflecting boundary conditions separately. The
NICE algorithm has already been verified by the analytical
solution of the Hartmann flow [4]. The physical problem of
interest s the dynamic evolution of a magnetic force-free field
driven by the shear motion of the foot points of the magnetic
field lines.

In this scenario, we consider a force-free magnetic arcade
straddling a photospheric neutral line. The arcade has transla-
tional symmetry along the neutral line, and rotational symmetry
about an axis below the surface. In this Cartesian coordinate
system, z denotes the height above the photosphere, x is the
projected distance from the neuotral line, and vy is the coordinate
normal to the x—z plane along the neutral line. A parameter t
denotes the depth of the symmetry axis below the photosphere
(z < 0).

One of the closed form analytica! solutions for the physical
scenario described above for the nonlinear force-free equation

VXB=aB (73)
obtained by Martens et al. [8) is
2 2
B, = — Byz' exp (t 3 4 ) (74)
B,=~ By V(1 — riyexp (¢ — 1) + C2 (75)
2 2
B.= Byxexp (‘ 5 z ) (76)
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FIG. 1. Magnetic field configwrations and displacement profiles for the
photosphere with the parameters C = 0.4 and r = 0 in (2); # = 1, in (b).

2
(2 — rHexp (,2 3 r)

o= .
V(I — rAexp (P — rd) + €2

)

where 7' = z +rand ? = x* + z'% The foot point of a magnetic
line-of-force has a shear displacement along a direction parallel
to the neutral line given by

Ay(x,»,z2=0,1

= tan™’ (f) VI—g—xt+ Ct exp(xh. (78)

Velocity of the shear motion on the lower boundary of the
computational domain can easily be obtained by the taking
time derivative of the displacement in the above expression,
Eq. (78), such that

. —X \/—___!—_—_*_‘
UJ—M? 1 —¢f —=xt+ Crexp(x?)
(79

—_ tan—? (E) !
VL~ 72—+ Clexpx?

The time scale used in this numerical experiment is merely a
parameter to describe the displacement of the foot points. The
magnetic arcades and the displacement profiles on the photo-
sphere are shown in Fig. 1 with the parameters C = 0.4 and

m@t=0andm(b)t =t =V2+2logC.

5.1, Test One: Verification of the Coupled
Boundary Condition

To test the validity of the coupled boundary condition, two
runs are carried out by using mathematical model equation (5)
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with the same initial and vpper and side boundary conditions,
except that the boundary condittons at the lower boundary in
each run are different. In run one, the lower boundary is speci-
fied with the known physical quantities. In run two, the coupled
boundary condition in the previous section is used to calculate
the physical quantities at the lower boundary., The results of
the two runs are then compared to validate the coupled bound-
ary condition.

In both runs, density, gas pressure, and temperature are kept
constant at the lower boundary. The non-reflecting boundary
conditions are used at the upper boundary and the two side
boundaries, since there are the arbitrarily chosen boundaries
and no physical boundary conditions can be specified on them.
In one run, the lower boundary is specified with all of the
magnetic induction components evaluaied from the analytical
solutions with 7 = 0 using Eqs. (74)-(76).

Initially, the atmosphere is isothermal and hydrostatic. The
velocity field is described by

—zx

Py &

— __x’ 2 !
oo | SNV A T G

~ tan™ (J‘T) ‘ ] @1
VI-7-x"+ e

y Jarc tan (z + ix! — @2
|arc tan t/x'| — @/2

_ —Hz v
YTEY {z4+ ¥ ®2)

where x' = V(t+ 2y +x*— 1~

In this test, the simulation time period is equal to one-tenth
of the maximum time and starts from zero, 1.e., 0 = ¢ = 0.04!
with € = 0.4. The physical parameters are listed in Table 1.
The domain size is 36 grid points by 25 grid points with the
grid size Ax = &5 andAz = % This makes the computational
domain physical size 28,000 km in the x direction and 12,500
km in the z direction (height).

There are four monitored stations located at the grid points
(19,10}, (19,20), (30, 10), and (30, 20) as shown in Fig. 2.
The first two stations are close to the neutral line and away
from the lower boundary, at which the analytical solutions
are specified as the boundary conditions. The second station
is twice as far as the first station away from the lower
boundary. The third and fourth stations are in the region
away from the neutral line,

At these four menitored stations, the magnitude of the vector
magnetic induction obtained from the numerical simulation is
compared with that of the analytical solution. The relative errors
of the comparison versus the time. normalized with the simula-
tion period, are shown in Fig 3. for run one and Fig. 4 for
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TABLE 11
Physical Parameters
Parameters MNumerical value Unit
f 3000 s
L 5.0 x 10# cm
U 1.0 x 1¢¢ cm/s
¥ 1.67 Dimensionless
R 1.653 x 10° erg/g-K
My 1.67 X 107" glem®
Te 3.0 x 10° K
B, 45 (rayss

run two, where the four frames show the comparisons at four
different grid points as (a) point (19,10); (b} point (19,20); {c)
point (30,10); and (d) point (30,20). Also in each frame, the
results of three runs with different time steps are shown for
the purpose of asymptotic analysis. The results from run one
with 1004, 2000, and 3000 time steps in the simulation period
are expressed in dash-dotted line, dashed line, and solid line,
respectively. The reason for recording results with different
time steps is to investigate the asymptotic behaviour of the
solution, i.c., the time accuracy of the algorithm that solves
the physical quantities in the computational domain. Since the
results with 1000 time steps are close enough to the asymptotic
solution with 5000 time steps, thus, the 1000 time steps are
used for the number of time steps in run two. The dotted line
is the two-degree polynomial least-square fitting of the curves
of the error in each frame. These dotted lines indicate the center
lines of the oscillating numerical results which deviate from
the analytical solution by less than 2% for run one and 6% for
run two. .

From these results, it is easy to note that the waves
propagating outward from the lower boundary in run two
are elimintated. This indicates that the forced boundary
condition at the lower boundary in run one creates spurious
waves while the coupled boundary condition eliminates the
spurious wave generation as demoastrated by run two. We
may conclude that the coupled boundary condition is superior
to the fixed boundary conditions.

At the region of monitored station (a), the deviation of the
numerical results from the analytical solution becomes larger
as time progresses. The end of the stimulation is not chosen
purposely to avoid the growing deviation from the analytical
solution, but is chosen randomly to be one-tenth of the charac-
teristic time; 1.e., the maximum time as discussed just prior to
Section 5.1. The excessive decrease of the magnetic induction
is caused by the convective effect of the dynamic system that
brings in lower magnetic flux from a higher elevation through
the convection process of a slightly over-predicted, down-
flowing velocity field, in comparison with analytical solutions.
As for the other three monitored points, the gradients of the
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FIG, 2. The coordinate systern and the locations of the monitored grid points for the expertments of the plasma shear flow.
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magnetic induction in the vicinity of these points are not as
large as at station (a). Therefore an over-predicted velocity
field affects the magnetic flux very little through the convec-
tion process. However, this reflects the deviation of the
dynamic simuolation from the quasi-static solution, and the
maximum deviation of the magnitude of the magnetic induc-
tion at monitored station (a) is around 6% at the end of
the simulation.

5.2. Test Two: Verification of the Non-reflecting
Boundary Condition

The non-reflecting boundary conditions are used in run one
and run two of test one without verification because test one
emphasizes the accuracy of the lower boundary. In test two the
nonreflecting boundary conditions will be investigated. To carry
out this test, all the parameters are the same as in run one of
test one except that the domain size is larger, so that the bound-
ary grid points, imposed with the non-reflecting boundary con-
dition in run one of test one, become interior grid points in this
test. Then the physical variables at these grid points, resulting
from run one of test one are compared with those resulting
from this test (i.e. test two) in order to verify the performance
of the non-reflecting boundary conditions applied especially in

the two-dimensional case. The reason for using this setup for
run one of test one, instead of that of run two of test one, is
that run one of test one creates waves which are considered to
be undesired in a real simulation but which are wvseful for
this test.

Since the positions of interest in this case are the intersections
of non-reflecting boundaries, three monitored grid points are
selected. The grid point {36,25) shown in Fig. 2, will be referred
to as station (a) which is an intersecting point of two non-
reflecting boundaries. The other two grid points (35,24) and
(34,23} will be referred to as station (b} and station (¢}, respec-
tively. These two stations are used to monitor the influence of
the non-reflecting boundary condition on the interior grid
points. The comparison of the results from run one of test one
(shown by dotted lines) and the results from this test (in dashed
lines) are shown in Fig. 5 and Fig. 6 with the three monitored
stations in each figure. The two physical quantities compared
are the normalized velocity component 4 in Fig. 5 and the
normalized magnetic induction component B, in Fig. 6. From
these figures, the non-reflecting boundary condition is shown
to work acceptably well in the multi-dimensional problem.
However, we should point out that better approximations may
exist, based on asymptotic analysis, when the far field is
nearly uniform.
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6. CONCLUSION

A new analytic approach of solving the time-dependent
boundary conditions of MHD flow is developed for multi-
dimensional non-isothermal plasma. In addition, for the situa-
tion when two of the eigenvectors are parallel, the solutions of
the boundary conditions are shown to be achievable. Numerical
experiments to test this formalism of the coupled boundary
condition and the non-reflecting boundary condition are pre-
sented.

The test results of the coupled boundary condition show that
the determination of 0 W/3at at the boundary is indeed much
better than the artificially defined W (cf. [4]). This is especially
true when the defined W is the solution of a set of steady
state equations.

For the non-reflecting boundary condition, the test results
demonstrate that the solutions on the upper and side boundaries
in run one of test one act just like the solutions at the interior
points in test two. The most troublesome point is the intersection
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FIG. 6. Comparison of the normafized B, resulting from run one of test
one and test two at three monifored grid points: (a) at (36,25}; (b} at (35,24},
{c} at (34,23), respectively.

of two non-reflecting boundaries which is one of the monitored
points in the numerical experiment. This test proves the validity
of the non-reflecting boundary condition in the multi-dimen-
sional problem. The accuracy may be improved if the explicit
determination of the boundary values can be formulated implic-
itly to the second-order accuracy compatible to the NICE algo-
rithim. In such a case, the formulation will be much more
complex than the present situation. This idea is one of our goals
in the near future.

An application of this newly developed use of time-depen-
dent boundary conditions can be found in the work of Martens
et al. [8].

APPENDIX: SoLUTIONS OF THE BoUNDARY EQUATIONS

In the x, direction, the inverse matrix 85, whose rows are
the left eigenvectors If of A®, i
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f — 2 2
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T8} + Eluly
, In the x; direction, the inverse matrix 85!, whose rows are
d} = L&t (88) the left eigenvectors I of A, is
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0 bl_],U} b23U} - U?u}f HE{ CIH} Cgu} 0
FPF
0 1713033 bzauf U?“?s u?; —Cxu.f —-czuf 0
FPF
0 —bpUl —bpU; Ul F wy ol —cul 0
ghac



342

where u} = (U}P, u} = (U, ul= u} ~ b}, and 1, = b} — u.
The solution vector d° is given in Section 4.2,
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